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ABSTRACT

We present a new method to identify large scale filaments and apply it to a cosmo-
logical simulation. Using positions of haloes above a given mass as node tracers, we
look for filaments between them using the positions and masses of all the remain-
ing dark-matter haloes. In order to detect a filament, the first step consists in the
construction of a backbone linking two nodes, which is given by a skeleton-like path
connecting the highest local dark matter (DM) density traced by non-node haloes. We
estimate the characteristic DM density between two skeleton-candidate haloes using
two approximations, i) the Voronoi tessellation density when the distance between
haloes is similar or smaller than the sum of their virial radii, and ii) when the distance
is larger, using a proxy of the minimum DM density between the two haloes assum-
ing NFW profiles. The filament quality is defined by a density and gap parameters
characterising its skeleton, and filament members are selected by their binding energy
in the plane perpendicular to the filament. This membership condition is associated
to characteristic orbital times; however if one assumes a fixed orbital timescale for
all the filaments, the resulting distributions of filament thickness and integrated mass
are consistent with the results using the full binding energy condition. Therefore, this
simplified set of conditions allows the method to be applied to observational data
with no dynamical information, while ensuring a reduced amount of systematic bi-
ases. We test the method in the simulation using massive haloes(M > 1014h−1M⊙)
as filament nodes, and study several statistical properties of the resulting filaments.
The main properties for the highest quality filaments corresponding to a 33% of the
total sample are, i) their lengths cover a wide range of values of up to 150h−1Mpc,
but are mostly concentrated below 50h−1Mpc; ii) their distribution of thickness peaks
at d = 3.0h−1Mpc and increases slightly with the filament length; iii) their nodes are
connected on average to 1.879 ± 0.21 filaments for ≃ 1014.1M⊙ nodes; this number
increases with the node mass to ≃ 2.73±0.026 filaments for ≃ 1014.9M⊙ nodes; iv) on
average, the central density along the filaments starts at almost a hundred times the
average density in the regions surrounding the nodes and then drops to about a few
times the mean density at larger distances, where it remains roughly constant over
20 to 80% of the filament length (this result may depend on the filament length); v)
there is a strong relation between length, quality and how straight a filament is, where
shorter filaments are those characterised by higher qualities and more straight-line like
geometries.

Key words: large scale structure of Universe.

1 INTRODUCTION

The large scale distribution of galaxies and dark mat-
ter(DM) shows a web-like structure composed by clusters,

⋆ E-mail: regonzar@astro.puc.cl (REG); npadilla@astro.puc.cl
(NDP)

walls, filaments and void regions, and is usually referred to as
the cosmic web. These structures can be easily detected by
eye in numerical DM simulations or in the observed distri-
bution of galaxies in large surveys such as the Sloan Digital
Sky Survey (York et al. 2000, SDSS).

For clusters and voids, there are several well estab-
lished automated identification methods which have been
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broadly used, such as the Friend-of-Friends algorithm for
halo/cluster detection (Davis et al. 1985, FOF), and the
Padilla, Ceccarelli & Lambas (2005) algorithm for reliable
detection of voids. In the case of filaments and walls this
task is markedly difficult since, in general, there is still no
clear consensus on how to characterise them; filaments and
walls show complex 3D shapes.

There are different approaches to the study of filaments.
From the theoretical point of view it was found that the
gravitational collapse of matter on large scales leads to
the formation of sheets and filaments (Zel’dovich 1970).
Bond et al. (1996) studied tidal fields in the large-scale
structure (LSS) and showed how these produce filamentary
structures.

There are several sets of filaments which have been
identified and characterised by eye in both simulations and
observations. Colberg, Krughoff & Connolly (2005) identi-
fied by eye 228 filaments between massive neighbouring
haloes in a DM simulation, and described several interest-
ing statistical properties using this sample. In observations,
Pimbblet et al. (2004) and Porter et al. (2008) identified fil-
aments in large surveys by eye, and dark matter (DM) fil-
aments were also be detected between clusters of galaxies
using weak lensing techniques (Mead et al. 2002). In x-ray
observations, it has also been possible to detect hot gas fil-
aments connecting clusters (Scharf et al. 2000).

The study of statistics and the topology of the galaxy
distribution with the aim to search for filaments starts
very early, with studies by Zel’dovich, Einasto & Shandarin
(1982), Shandarin & Zel’dovich (1983), and Einasto et al.
(1984). Options to automate the search of filaments in-
clude the use of statistics on the morphology of struc-
tures, such as Minkowski functionals, minimal spanning
trees (MST), percolation methods and shapefinders (see re-
view by Mart́ınez & Saar 2002). The minimum spanning
tree method was introduced in cosmology by Barrow et al.
(1985). This produces a unique graph which connects points
of a process without closed loops, but describes mainly the
local nearest-neighbour distribution and is unable to provide
a full characterisation of the LSS. Shapefinders (Sahni et al.
1998) have also been used to identify filaments.

In three dimensions, the morphology of a compact man-
ifold can be characterised by four Minkowski functionals:
volume, surface area, integrated mean curvature and inte-
grated gaussian curvature. It is possible to define a number
of quantities related to those functionals; if a set of positions
of galaxies or haloes is characterised by particular values of
ratios between the Minkowski functionals, it is very likely
that it will show a filamentary shape (Bharadwaj et al.
2000), but this does not guarantee a true detection of a
filament or that all the selected members actually belong to
the filament.

Another algorithm for the detection of filaments was
proposed by Pimbblet (2005) based on the assumption that
the orientations of constituent galaxies along such filaments
are non-isotropic. This method works well on straight fila-
ments with separations smaller than 15Mpc/h, as has been
shown in their application to the 2-degree Field Galaxy Red-
shift Survey (2dFGRS, Colless et al. 2001).

The Skeleton method (Eriksen et al. 2004;
Novikov et al. 2006) has proven useful for the detec-
tion of possible filamentary structures in continuous two

dimensional density fields. The skeleton is determined by
segments parallel to the gradient of the field connecting
saddle points to local maxima. The method involves
interpolation and smoothing of the point distribution,
introducing the kernel band-width as an extra parameter in
the procedure of estimating the density field. Extending this
work to three dimensions, Sousbie et al. (2008) found good
agreement between detected skeletons and eye detections
in a numerical DM simulation. By using the Hessian
matrix eigenvalues they were able to detect filamentary
structures (See also Aragón-Calvo et al. 2007a, 2007b).
Bond, Strauss & Cen (2009) also use the Hessian matrix
of the galaxy density field smoothed on different scales to
characterise the morphology of the LSS in mock catalogues
and in the SDSS (Stoughton et al. 2002); they use their
detected structures to determine the typical scales where
filaments, clumps and walls are dominant.

The Candy Model used by Stoica et al. (2005), is a
two-dimensional marked point process where segments serve
as marks. This method has been adapted to three dimen-
sions and also improved to a more general Bisous Model
(Stoica et al. 2008), producing detections in very good
agreement with the result of eye detection in tracing fila-
mentary structures using only galaxy positions (as in the
method we will present). However, the detection and thick-
ness of the resulting filaments is only given by a coverage
threshold (percent of total points, to be included in fila-
ments).

The spin and orientation of haloes in filaments has been
studied by Aragón-Calvo et al. (2007b) and Zhang et al.
(2009). They use a Multi-scale Morphology Filter (MMF)
and compute the Hessian Matrix eigenvalues in a density
field smoothed on different scales, to divide the full volume
of their samples into cluster, filament and wall like struc-
tures. However, this method, as well as other Hessian matrix
based methods, is affected by a lack of an ability to deter-
mine the thickness of filaments, and are difficult to apply
to observational data, where one needs to define whether a
galaxy is a member of a cluster, filament or void.

In this work we propose a new automated method
to detect filaments which builds upon ideas of several of
the methods mentioned previously. A novel feature of the
method is that it is designed to search for filaments us-
ing nodes (corresponding to haloes or galaxy clusters as in
Colberg, Krughoff & Connolly 2005) selected by applying
lower limits on their mass (or proxy for mass). This new
method aims to be applicable to discrete halo or galaxy
positions even when these are so sparsely distributed that
it is not possible to define a smooth density field, or that
the Hessian matrix cannot be computed with an adequately
high accuracy. This makes it particularly suitable for obser-
vational data such as the 2dFGRS or SDSS. In addition, we
replace the smoothing scales and filament coverage thresh-
olds by parameters with improved physical meaning. In this
new approach a filament quality depends on parameters re-
lated to the relative density and gaps of the filament skele-
ton, and its members are identified as the haloes or galaxies
with binding energies with respect to the filament in the
plane perpendicular to its skeleton. In order to apply this
method to observational data we will use numerical simula-
tions to calibrate the binding condition using objects with
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a collapse time and radius that can be computed even when
dynamical information is not available.

This paper is organised as follows. Section 2 presents the
numerical simulation on which we perform our automated
search for filaments. The method is presented in Section
3, which also includes details on the measurement of the
local density field, and describes the input parameters of
the algorithm. Section 4 presents the results and Section 5
concludes this work with our conclusions.

2 THE NUMERICAL SIMULATION

We use a cosmological DM simulation with parameters cor-
responding to the concordance ΛCDM model (cold dark-
matter, Ωb = 0.045, ΩDM = 0.235, ΩDE = 0.72, h =
0.72, σ8 = 0.847, & n = 1), 5003 particles and a peri-
odic cube side of 250Mpc/h. At z = 0 we find 176, 041
haloes and subhaloes in the mass range 1.4× 1011h−1M⊙ <
M < 1.5 × 1015h−1M⊙, identified using the AHF code
(Knollmann & Knebe 2009). For the detection of filaments,
we select as nodes a total of 427 haloes with M >
1014h−1M⊙. The node pairs that will be the candidates
for filament search are constructed using neighbour nodes,
which are easily obtained using Voronoi Tessellations(VT
hereafter, to be explained in more detail in the next sec-
tion). We obtain a total of 3, 075 node pairs with separa-
tions < 65h−1Mpc; Figure 1 shows all the node pairs in a
slice of the simulation. In the next section we will apply the
filament detection method to each of these node pairs.

3 METHOD

Our filament detection method is described in this section.
Even though we will apply it to a numerical simulation,
it can be extended to observational datasets with redshift
information since it can be set to produce filament sam-
ples while only requiring galaxy positions and proxies for
their host dark-matter halo masses (virial masses, luminosi-
ties in different bands, etc). We will not attempt to find all
the filamentary structures in the simulation, only those fila-
ment segments generated between haloes above a given mass
threshold (node pairs). Therefore, smaller filaments associ-
ated to less massive nodes will be missed if they are not in
the path (or part) of the selected nodes.

3.1 Density field

We obtain the density and density gradient field us-
ing VT, in a similar approach to that adopted by
Aragón-Calvo et al. (2007b) where they compute the den-
sity field using Delaunay Tessellation Field Estimator
(Shaap & van de Weygaert 2000). In the present study we
make use of the neighbour information for all the haloes to
trace the density field as well as to compute a fast proxy
for the density gradient vector field. VT also allows us to
obtain the immediate neighbours of each halo (or galaxy
if applied to observational data). The Voronoi Tessellation
(Voronoi 1908) technique is one of the best adaptive meth-
ods to recover a precise density field from a discrete distri-
bution of points, with clear advantage over the method used

in Smoothed Particle Hidrodynamic or other interpolation
based techniques (Pelupessy et al. 2003).

We compute the VT for the halo distribution defining
a cellular-like structure, where each halo is associated to a
region (or voronoi cell) in which any point inside this region
is nearest to that halo than to any other. This voronoi cell
defines a volume which we use along with the halo mass to
define a very precise and adaptive measure of the density
of the cell. We also use a first order smoothing of the den-
sity field by calculating the mean density of the central and
neighbour VT cells.

The estimates of density for the DM haloes in our sim-
ulation use their measured virial mass. In many cases, the
Voronoi cell containing high mass haloes in dense environ-
ments are smaller in volume than the sphere given by its cen-
tral halo virial radius. This indicates that in these cases we
are over-estimating the local density. The opposite occurs in
cells of haloes in voids and filament outskirts, where we can
under-estimate the local density surrounding these haloes.
In the high density end, this problem is not important in
our case since we do not include in our method haloes in-
side the virial radius of tracer nodes. In low density regions
where the voronoi cells of haloes are always much larger
than their virial spheres, we avoid the problem present in
the Voronoi density estimate by using an approximation as-
suming Navarro, Frenk & White (1997, NFW) profiles.

For a smooth density field, such as is the case of fields
traced by DM particles, the Hessian matrix can be computed
with high accuracy to find the filament components easily.
But the process is more complicated in the case of having
only the positions of haloes and their virial masses. This is
due to the sparse coverage of haloes, their variable masses,
and the loss of information regarding the mass located be-
yond the virial radii of haloes. In order to understand the
importance of these issues we will look at the relation be-
tween average halo to neighbour separation (DIP ) and its
voronoi cell volume.

In order to recover the real density field using only halo
positions, one needs to take into account that,

• In high density environments the voronoi cell volume
is related to the local mean inter-particle distance, i.e., the
mean neighbour distance DIP . The left panel of Figure 2
shows a very tight relation between these two quantities for
the full halo population. In the figure, the dashed line shows
the V ∝ D3

IP relation, which is very useful for halo detec-
tion methods such as FOF (Davis et al. 1985), where the
particle separation is used to connect particles above a given
density threshold. In the case of having only halo positions,
we find that this relation breaks down at lower densities
(as can be seen in the left panel of Figure 2). The origin
of this departure from the distance vs. volume relation is
the complex shapes developed by Voronoi cells at such low
densities. This implies that the local clumpiness of a set of
particles in low density environments is only poorly related
to its density; this may pose a challenge to the search for the
backbone of filaments. This effect is negligible when obtain-
ing the density field using DM particles since these typically
produce a smoother spatial coverage and therefore a much
smaller fraction of these will be surrounded by Voronoi cells
with complex shapes.

• Halo masses introduce additional noise when extending
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Figure 1. Density field in the numerical simulation corresponding to a slice 100h−1Mpc thick. The density is obtained using the
halo positions. The red circles enclose the virial radii of the node haloes; white lines connect all the node pairs separated by less than
65h−1Mpc.

the previous relation to ρ−DIP (right panel of Figure 2). In
this case, it is possible that the set of haloes with highest VT
densities between two nodes do not trace the best possible
filament backbone (or the highest DM density path) when
compared to a different set of haloes with a smaller inter-
halo distance.

Regarding the second item, in order to find the path of
highest local DM density connecting two nodes, we need to
add constrains on the use of the density field obtained from
halo positions. To connect the i-th halo in a filament skeleton
to the following neighbour j, such that the characteristic DM
density ρ∗ is a maximum, we will have two cases,

i) Dij 6 RV IR(i) + RV IR(j) : ρ∗ = k1 ρ(j).

In this case the halo voronoi density is a good proxy for the
DM density when the voronoi cell volume is similar to the
virial sphere, but may be over-estimated if the cell volume is
smaller. This is not a problem for our method since ρ∗ will
naturally increase when haloes are gravitationally linked,
and therefore the segment connecting haloes i and j will
have the maximum characteristic DM density among the
other nearby neighbours.

ii)Dij > RV IR(i) + RV IR(j) : ρ∗ = k2 ρ(j) η−1f(Mi, Mj),

which uses NFW profiles to estimate the minimum DM den-
sity between two haloes. In the equation, Dij is the distance
between haloes, ρ is the voronoi density, Mi and Mj are the
halo masses, the η factor represents the break-down of the
relation between inter-halo distance and voronoi cell volume,

η =
D3

IP

Vcell

,

f(Mi, Mj) ≃

„

Mi

M∗

«0.13 „

1 + Ω

Ω

«3

, Ω =

„

Mi

Mj

«0.376

,

and k1 and k2 are constants intended to provide the con-
tinuity between both densities at η = 1 and Ω = 1;
M∗ = 1012.5h−1M⊙ is the constant in the Bullock et al.
(2001) concentration vs. mass relation. The η parameter ap-
pears naturally in this approximation where its value is usu-
ally greater than one; therefore, two haloes with high masses
and high voronoi densities will have lower ρ∗ if their separa-
tion is large, as can be the case in regions with a low number
density of discrete points.

The DM density between two haloes will be used as
segment weights in the search for the path connecting two
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Figure 2. Left panel: Voronoi cell volume vs. mean neighbour separation, DIP , for all the haloes in the simulation. Right panel:
Voronoi Density vs. DIP for all the haloes. Dashed lines represent the relation V = D3

IP (left panel); in the right panel it corresponds
to V = median(MV IR)/ρ.

nodes, in a similar way to that used in the search for the
shortest path in graph theory; therefore, the filament back-
bone or skeleton is the result of solving for this graph, which
has several different approaches in the literature (Biggs,
Lloyd & Wilson, 1986).

3.2 Input parameters

We detect filaments using nodes above a fixed minimum
mass. This choice is necessary since the filamentary structure
is found at different scales; there are even filaments inside
filaments or inside clusters (Bond et al. 1996).

In addition to the minimum node mass, other parame-
ters will be necessary. However, our aim is to involve only
the minimum number of parameters possible, which include
the following,

• A minimum density threshold for the galaxies or haloes
which form the backbone of a filament. When a filament is
too thin, or the density contrast above the background is too
low, it is possible that the filament is just a group of aligned
galaxies which are not bound to any stable structure; these
are spurious detections.

• A maximum gap threshold for the galaxies or haloes
which define the backbone of the filament. A measure of the
gaps in a filament is given by max(DSK/ < DSK >), the
maximum distance divided by the average distance between
all pairs of consecutive skeleton members of an individual
filament. Large values for this parameter imply large gaps
between two filament sections. Gaps are an important prob-
lem, particularly for low density filaments.

• After the definition of the backbone or skeleton of the
filament has been completed, we select the members of the
filament. This is done by analysing which neighbours are

gravitationally linked to the filament and will collapse into
the skeleton or remain within the filament for at least a
given amount of time. We define a timescale tF , which is
the maximum time allowed for the orbit of a halo in the
plane perpendicular to the filament, assuming it is gravita-
tionally bound (in this plane). Since the peculiar velocities
of the haloes in the numerical simulation are known, we can
calculate which haloes are bound to the filament; we use this
information to characterise an average timescale and the as-
sociated radius out to which bound haloes can be found.
This will help to implement this filament identification in
the case of observational data with no available information
on peculiar velocities.

It is complicated to define physically motivated density
and gap thresholds for each filament analogous to the virial-
isation density for the spherical collapse model. The reasons
behind this are the complicated filament shapes and their
continuous feeding of their node haloes or clusters. There-
fore, we will use these parameters to assess the quality of a
filament; filaments will be better defined if their minimum
backbone densities are high and their maximum gaps are
small.

3.3 Description of the algorithm

We identify filaments in the following way,

(i) We select a node tracer pair.
(ii) We follow the segments of highest local DM density

given by the characteristic density ρ∗. This defines the fila-
ment backbone or skeleton. For this we define a set of thresh-
old densities ρth(i) with i = 1..N , in the range set by the
minimum and maximum densities in the total density field.
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Figure 3. Four examples of detected filaments. The red solid lines show filament skeletons, the blue dashed lines show the re-centred
skeleton. The white asterisks correspond to haloes at distances from the filament r < r0, whereas blue squares show haloes at distances
r < r1. The red triangles show haloes with EP < 0.

(iii) For each node we generate a list of neighbour haloes
just outside the virial radius in the half hemisphere that
points to the other node. These neighbours will be labeled
as start haloes associated to the node from which we will
start the filament search. End haloes will be the neighbours
associated with the other node in the node pair in the half
hemisphere pointing back to the start node.

(iv) The first attempt is done using the highest density
threshold ρth(i = 1).

(v) The process is iterative selecting the start halo with
the highest local DM density with respect to the start node,
characterised by a local density greater than ρth(i). A halo
that satisfies this condition becomes part of a possible skele-
ton, and we search for neighbours of this new skeleton mem-
ber using the same conditions. If there are no new neigh-
bours satisfying this, we go back to the previous halo from
where we will choose a different neighbour to restart the
procedure.

(vi) We repeat the last step until any of the end haloes of
the other node is reached, or until there are no more haloes
satisfying these rules.

(vii) If there is no connection to the other node then we
move down to the next density threshold step ρth(i + 1)
characterised by a lower density, and go back to step v.

(viii) We will always find a set of connected points (a fil-
ament backbone) between two nodes for a sufficiently low
value of ρth density. Higher values of this density imply
stronger filament contrasts.

(ix) We re-centre the local centre of mass of the filament
skeleton using its immediate Voronoi neighbours.

Having a well defined backbone, we start adding skele-
ton neighbours to the filament and computing filament char-
acteristics, in the following way,

(i) For any given halo k we find the nearest skeleton mem-
ber j.

(ii) We measure the mass contained in a cylinder around
the skeleton at the position of the skeleton halo j. The
cylinder height is H = (Dj,j+1 + Dj+j−1)/2 and its radius
R = Dkj . Using this mass and the difference between the
average velocities of the haloes within that cylinder, and
that of halo k, projected in the plane perpendicular to the
cylinder, we compute the total halo energy in the plane, EP .

(iii) We compute the orbit time t around the cylinder for
halo k assuming that the distance Dkj is the semi-major
axis of the orbit. This timescale only uses information on
the potential energy and does not require peculiar velocity
data.
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(iv) We select all haloes with EP < 0 and calculate their
median orbit time t1; we define r1 as the radius containing
80% of these haloes. This sample can only be obtained from
haloes with peculiar velocity information.

(v) We select all haloes with EP < 0 and t 6 tF , with tF a
fixed input parameter, and we define r0 as the radius where
80% of these haloes are contained. This defines a sample
using EP measurements. Therefore it needs peculiar velocity
information to be constructed.

(vi) We select all haloes with t 6 tF , and define r2 as
the radius where 80% of these haloes are contained. This
selection can be done with position information alone and
would therefore be applicable to large observational datasets
such as the SDSS.

(vii) Finally, we also select all haloes with t 6 t1, and
we define r3 as the radius containing 80% of these haloes.
This selection also requires velocity information and is used
to assess the importance of the binding energy condition
against that of the orbital timescales.

All haloes closer to the skeleton than r1 will be selected
as filament members in the simulation. For observational
data r2 can be used for this purpose.

4 RESULTS

Figure 3 shows four detected filaments in the simulation,
where the halo density projected onto the x − y plane is
shown in a colour scale, the skeleton is shown as red lines,
and the re-centred skeleton as blue dashed lines. The nodes
are indicated by circles with radii equal to the halo virial
radius. White points denote all haloes lying closer than r0

from the filament skeleton, and blue boxes denote haloes
closer than r1. The red triangles are for haloes with EP < 0.
All the filaments contain segments with only either a few or
no bound haloes, at least according to our definition.

We bear in mind the possibility of undetected bound
haloes since in our energy calculation we do not take into
account nearby structures other than the filament. In order
to produce a more precise energy calculation one would need
to use velocities from other sections of the skeleton instead
of only from the nearest skeleton section; filaments show
a very complex velocity structure where nodes sometimes
move towards each other (they may merge in the future)
or away from each other, making filaments suffer stretch-
ing, elongations, torsions, and even rotations. However, the
incompleteness in the sample of bound haloes should not af-
fect our estimate of the mean effective radius of the filament
(r1) which we use to define filament membership.

In the upper-left and bottom-left panels of Figure 3 the
filaments show excellent density contrasts, but also show a
gap (near the top node in the upper-left panel, and near
the left node in the bottom-left panel). This shows the im-
portance of adopting a gap parameter that allows the exis-
tence of these features in selected filaments, to some degree.
The filaments in the right panels are of higher quality than
those on the left since they do not show important gaps. The
section of the filament on the upper-right panel seems not
to follow the highest density path due to projection effects
(the filament follows a path that enters the page, along the
z-axis).

Figure 4. Filament quality parameters. Minimum skeleton den-
sity (ρ∗min) as a function of the Gap size (max(DSK)/ <
DSK >).

4.1 Filament properties

We apply the method to the numerical simulation described
in Section 2, using a minimum skeleton characteristic density
ρ∗min = 3ρmean and no gap restriction, limiting the node
pairs to relative distances lower than 65Mpc/h.

Out of the 3075 node pairs, 1110 are successfully con-
nected via filaments; we will refer to this first identifica-
tion as the full sample. We select an additional subsam-
ple of 376 filaments which satisfy the additional condi-
tions of ρ∗min above the median of the full sample, and
max(DSK)/ < DSK > below the median; this sample is
termed the high-quality subsample and contains 33% of the
filaments in the full sample. As was mentioned above, all the
detected filaments connect nodes separated by at least the
sum of their virial radii. Figure 4 shows the relation between
gap and density parameters for the detected filaments which
show clear trends of larger gaps at lower densities.

Figure 5 shows the dependence of the quality param-
eters on node separation for the full sample. There are
clear correlations, particularly for filaments shorter than
20Mpc/h, which suggests that shorter node separations pro-
duce higher quality filaments.

When studying the properties of the filaments detected
using our automated procedure, it will be useful to com-
pare with a previous detection. In particular, we will use
the results from Colberg, Krughoff & Connolly (2005) who
detected 228 filament in a DM simulation by eye using the
smoothed DM density distribution. This filament sample can
not be compared directly with our results, since the selection
criteria are very different. However, both samples are the re-
sult of restricting the search to filaments connecting neigh-
bouring haloes above 1014h−1M⊙. The main differences be-
tween the two samples arise from, i) Colberg et al. use the
distribution of DM particles whereas we use halo positions,
ii) they look for filaments using the 12 nearest haloes inside
cylinders of 7.5h−1Mpc of radius aligned along the node-
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Figure 5. Gap (left) and density (right) quality parameters as a function of node separation.

node axis; in our case we look at all possible neighbour node
pairs given by the voronoi tessellation with no volume con-
strain, iii) Colberg et al. define a true detection based on a
visual criterion instead of using quality parameters, iv) they
discard node pair connections when other clusters lie inside
the innermost 5h−1Mpc from the node-node axis, and we
discard node pair connections when another cluster is closer
than 2 times its virial radius to the filament skeleton, v)
they divide their sample in straight, off-centre and warped
filaments. Therefore, the reader must bear in mind that com-
parisons between these two samples, are not intended to val-
idate any of the two samples, but to find general filament
properties which are less sensitive to different selection cri-
teria.

The node pair connections are given by the voronoi tes-
sellation method, which instead of selecting the n nearest
neighbours, chooses neighbours such that the line that con-
nects the pair passes only through the voronoi cell around
each node. This ensures than any point along the segment
is nearest to one of the two nodes and not to other haloes.
The node pair count of the full sample as function of the
node separation is shown in Figure 6 as an orange dashed
line (the scale of the counts in 5h−1Mpc bins, is given by
the right y-axis). The number of pairs grows almost linearly
with the separation almost up to 40h−1Mpc, and then it
decreases for larger node separations. In addition, Figure 6
shows the fraction of node pairs with detected filaments as
a function of node separation (left y-axis scale). The full
sample (solid black bars) is characterised by a decreasing
fraction of connected pairs via filaments as the separation
increases; this fraction is nearly 90% for separations shorter
than 5h−1Mpc, and at the largest separations the fraction
is reduced to 30%. In the case of the high quality subsample
(red bars) the abundance of filaments decreases much faster
with fractions below 25% for nodes separated by more than
20h−1Mpc.

Figure 6 also shows the fractional abundance obtained

Figure 6. Fraction of node pairs with detected filaments as
function of node pair separation (left y-axis). The green bar on
the first bin shows the fraction of node pair connections separated
by less than the sum of their virial radii. The total node pair count
as a function of node separation for the full sample is shown as
an orange dashed line (its scale is indicated on the right y-axis).
Black bars show the same fraction for the full sample of quasars,
red bars are for the high quality subsample, and the blue bars are
for the Colberg et al. sample detected by eye.

by Colberg, Krughoff & Connolly (2005). Even though
their selection procedure is different from ours, the resulting
dependence of this fraction with pair separation is similar to
our results for the high quality subsample. Our method does
not consider haloes inside the virial radii of nodes, which
means that we do not detect most of the filamentary struc-
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ture connecting two nodes separated by distances shorter
than the sum of their virial radii. The green bar shown for
separations shorter than 5h−1Mpc in Figure 6 indicates the
fraction of node pairs whose separation is shorter than the
sum of their virial radii for this range of separations. Most of
the pairs represented by the green bar should be connected
by filaments (Pimbblet et al. 2004), since these are overlap-
ping bound systems which share matter (i.e. Dietrich et al.
2005; Tittley & Henriksen 2001); furthermore, this behav-
ior should extend up to node separations of a few virial radii
(approximately three times the virial radius), which can be
associated to the infall region of haloes (Diaferio & Geller
1997; Pivato, Padilla & Lambas 2006). Taking into account
the mass resolution of our numerical simulation, the mass in
such bridges is mostly in the form of a smooth DM particle
distribution, with only a few subhaloes aligned within the
bridge. This makes it more difficult to detect them with our
method even if we also used subhalo positions; as a conse-
quence we have chosen not to include them in the search. A
possible way to overcome this would be to use the DM par-
ticle distribution, or to run re-simulations of these regions
with higher resolution, enough to resolve several subhaloes
per node. The result of such a study would likely change
our fraction of detected filaments for node separations be-
low 5h−1Mpc, which we are underestimating at present; in
the case of Colberg, Krughoff & Connolly (2005), they find
that most of the halo pairs within this range of separations
are connected via filaments.

In the case of filaments detected in the 2dFGRS,
Pimbblet et al. (2004) find a fractional abundance of fila-
ments similar to our full sample results; however, their selec-
tion criteria are also different from the one we have applied
to the simulation. In particular, they also identify filaments
by eye and use galaxy positions; therefore in order to make
an appropriate comparison it would be necessary to apply
our method to realistic 2dFGRS mock catalogues, or directly
on the 2dFGRS catalogue.

The main properties of the detected filaments are shown
in Figure 7. The top-left panel shows the distributions of t1
(the median orbit time for haloes with EP < 0), where it
can be seen that the high quality filaments are characterised
by lower orbit times as expected since these filaments have
higher density contrasts and are more concentrated than the
full sample. The samples shown in the figure are obtained
setting tF = 2t0 (vertical red dashed line) which is lightly
lower than the median of t1 (indicated by the vertical blue
dashed line). This latter value can be used when detect-
ing filaments using observational data since the orbit time
distributions shown here are relatively narrow (most of the
filaments show similar orbital timescales).

The top-right panel of the figure shows the distribu-
tions of the parameters r0 and r1 (line types are indicated
in the figure key) described in the previous section. As can
be seen, a fixed orbit time produces a narrow distribution
of r0 but a wider distribution of r1 which is obtained using
t1. However, the peaks of both distributions are located at
approximately 1.3Mpc/h. It is also noticeable a very slight
shift towards smaller radii for the high quality subsample in
both cases, an effect which is stronger for the r1 parame-
ter, indicating a dependence of the tf value with the quality
of the filaments. Therefore, better quality filaments seem to
be more concentrated while preserving similar thicknesses

with respect to the filaments in the full sample. In addi-
tion, the figure also shows the scale radius rs computed
by Colberg, Krughoff & Connolly (2005) for their sample
of filaments (blue bars). In their notation rs defines the ra-
dius where the density profiles of straight filaments starts to
follow a r−2 relation. Our definition of r1 indicates a scale
radius containing 80% of the bound haloes with orbit times
below the median. Even though both definitions are con-
ceptually different, they account for the scale radius where
≈ 50 − 80% of the filament mass is contained. In general,
for a given filament, rs is a more precise computation of the
edge of the filament, but requires the DM particle distribu-
tion to be calculated; r1 is easier to compute since it only
requires halo positions; however, it can underestimate the
filament edges depending on the density profile and density
contrast. Therefore, despite the fact that the comparison
is made among two quantities with different definitions, as
well as different filament samples, it is interesting to note
that the distributions of r1 and rs show similarities; the lat-
ter only shows a slight shift towards larger radii. As can
be seen, the characteristic radius which defines a filament
shows a narrow distribution with preferred values of 1 to
2h−1Mpc, even when using filaments of different quality or
using a sample of filaments selected by eye. In all cases, how-
ever, the lengths of the filaments are similar and are traced
by halo nodes with masses above 1014h−1M⊙.

The Bottom-left panel of Figure 7 shows the distribu-
tion of mass for different filament components (line types are
show in the figure key); all the distributions are shown for
the full sample of filaments. As can be seen, this tracer node
mass selection produces skeletons and filament envelopes less
massive than the filament nodes. Both of these two compo-
nents show similar distributions, with differences only at the
low-mass-end. Notice that when using either r0 or r1 the re-
sulting filament mass is practically the same. This shows
that the detection of filaments using a fixed orbit time (for
observational data) will provide reliable filament mass mea-
surements. In the case of the high quality filaments, we find
that the masses of the skeleton and the surrounding fila-
ment shells are lower than for the complete filament sample,
since the former are shorter in length (as can be seen in the
bottom-right panel of the figure). We find no clear depen-
dence of filament mass on their node masses.

The bottom-right panel of the figure shows the distri-
butions of node pair separation and of filament extension
(line types are indicated in the figure). The filament ex-
tension is a measurement of the smoothed filament length,
obtained by adding the distances between filament member
average positions in a discrete number of segments along
the filament. The node separation is on average smaller
than the filament length, which indicates that most fil-
aments are warped. The distribution of node pair sepa-
ration peaks at ≈ 32Mpc/h for the full sample, and at
≈ 15Mpc/h for the high quality subsample. The filament
lengths also show a peak at shorter values for the high
quality subsample. When analysing the ratio between these
two quantities in both, the full and high quality samples,
it can be seen that regardless of quality, longer filaments
are more warped than shorter filaments; i.e. in the full
sample, filaments with node separations below 30h−1Mpc
are on average 13% larger than their node separation; this
value increases to 40% for larger node separations. The
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Figure 7. Distribution functions of properties of the detected filaments. The samples of filaments detected using our automated method
are shown in different line types (explained in the key). The statistics from the Colberg, Krughoff & Connolly (2005) filament sample
are shown as barred histograms.

filaments studied with Shapefinders in the Las Campanas
Redshift Survey (Bharadwaj, Bhavsar & Sheth 2004) are
characterised by lengths of 50h−1Mpc to 80h−1Mpc. In this
work, we have found shorter high quality filaments but we
have also required node pair separations < 65h−1Mpc. It
should also be borne in mind that in most cases these fil-
aments are only segments of considerably longer structures
with more than two nodes (shapefinders are insensitive to
the number of nodes in a filament).

Figure 8 shows the relation between filament thick-
ness (r1) and filament length. The error bars correspond
to the standard deviation in the measurement of the me-
dian of r1, and are computed using the jackknife method.
In the high quality subsample, we do not include filaments
longer than 80h−1Mpc due to low filament counts (< 10).
As can be seen, there is a trend of thicker filaments for
longer filament lengths in both samples (full and high qual-

ity). For the high quality sample, the median values of
r1 for filaments with lengths between 0 and 10h−1Mpc
are 1.11 ± 0.19h−1Mpc, and for lengths between 60 and
70h−1Mpc are 2.01 ± 0.29h−1Mpc (a significance of more
than 3σ between the longest and shortest filament lengths).
This dependence can be a consequence of any or several of
the following effects, i) all filaments feed their node haloes
and shorter, less massive filaments will exhaust their mass
first due to the higher infall velocity and node halo influence
over a larger percentage of the filament length (the influ-
ence can extend out to several virial radii, Diaferio & Geller
1997), ii) shorter filaments are straighter than longer ones;
therefore, in longer, warped filaments concave zones along
the skeleton could attract haloes from larger distances, an
effect that would be absent in straight-line filaments. The
detailed study of this possibility is beyond the scope of this
paper and will be treated in a forthcoming paper on fila-



Automated detection of Filaments in the LSS 11

Figure 8. Filament thickness (as measured by r1) as a function
of filament length, for the full sample (black) and high quality
subsample (red).

ment shapes and environments. iii) A higher probability to
spuriously assign bound haloes at larger distances from the
skeleton for longer filaments, but this is less likely since this
effect is also present when using r0 (which does not depend
on a computation of energy) as a thickness indicator.

We study the variation of the mass density along the fil-
ament skeletons. Figure 9 shows the average over-density as
a function of the normalised node pair separation. It should
be borne in mind that as we use the interpolated voronoi
density obtained from the halo positions and their viral
masses, the density only includes a fraction of the total mat-
ter (DM particles beyond the virial radii of haloes are not in-
cluded in this estimate). We exclude filaments with skeletons
containing less than 6 haloes, and the figure only shows half
of the filament length since the profiles are symmetrical (on
average). The figure shows a similar density profile to those
found by Colberg, Krughoff & Connolly (2005), where the
over-density rises towards node centres, indicating that on
average the infall regions of filaments extent up to 20% of
the filament length. At larger distances from the nodes, the
overdensity remains at nearly constant values of a few times
the average density. The high quality subsample shows a
similar profile although with higher density contrasts than
the full sample.

We now study the number of filaments connected
to individual nodes, and how this depends on the node
properties. Figure 10 shows the fraction of filaments con-
nected to 0, 1, 2, ... filaments for the full sample (black solid
lines), the high quality subsample (red solid lines), and the
Colberg, Krughoff & Connolly (2005) results (blue bars).
The Poisson error amplitudes are shown as dashed lines for
the full and high quality samples. In the full sample, most
nodes are connected to 4−6 filaments, indicating that allow-
ing in all the detected filaments without applying any qual-
ity constraints does not provide realistic results, bearing in
mind the observational (Pimblett et al., 2005) and numerical

Figure 9. Average longitudinal filament over-density profile ob-
tained using the interpolated voronoi density along the skeleton,
as function of the normalised node pair separation. We only show
half of the filament length since the profiles are symmetrical, on
average.

simulation (Colberg et al., 2008) results on this statistics. A
better agreement with these estimates is obtained when us-
ing the high-quality subsample, in which case most nodes are
connected to 2 filaments (and the distribution is very sim-
ilar to that from the Colberg, Krughoff & Connolly 2005
filaments). In general the number of filaments per node is
strongly dependent on the quality of the filaments consid-
ered, similar quality thresholds are needed in order to make
meaningful comparisons.

Figure 11 shows the average number of filaments per
node as a function of the node mass. In all cases this num-
ber increases with the node mass. Errors, shown as dashed
lines for the full and high quality samples, are obtained using
the jackknife method; errors are not shown for the highest
mass bin M > 1015M⊙ (cyan hatched region) due to the low
number of nodes (10) at this end. Nodes in the high qual-
ity subsample are connected to an average of 1.87 ± 0.21
filaments for the lowest mass bin, a number that increases
to 2.73 ± 0.26 for M ≃ 1014.9M⊙; the significance of this
trend is higher than a 3σ level. This behavior was also
observed in the 2dFGRS by Pimbblet et al. (2004), and
in a numerical simulation (Colberg, Krughoff & Connolly
2005), clearly indicating that more massive haloes are more
likely to have a larger number of connected filaments. This
can be associated to the higher amplitude of clustering of
more massive haloes characterising random gaussian fluctu-
ation fields in a ΛCDM cosmology Pimbblet et al. (2004).

There is a number of possible issues that could affect
this statistics that need to be borne in mind, i) we do not
use subhaloes, and therefore node pairs closer than the sum
of their virial radii could present filaments which we do not
detect. Such close pairs will be more abundant for more mas-
sive haloes due to their higher local overdensities, therefore
these undetected filaments could populate the high mass end
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Figure 10. Fraction of nodes connected to N filaments for the
full sample of filaments (solid black lines), and for the high qual-
ity subsample (solid red lines). In both cases, Poisson errors are
shown by the dashed lines. The results from Colberg et al. (2005),
are indicated as blue bars.

of the figure 11. ii) To avoid repeated filament segments, we
discard filaments which are closer than 2rvir to a third node,
and Colberg, Krughoff & Connolly (2005) uses a fixed value
of 5h−1Mpc for a similar proximity condition. In both cases
we could be missing short filaments in dense environments
where nodes are more massive, have larger virial radii and
are more strongly clustered; in such places this proximity
constrain could be excessive. In order to test this issue, we
make a subsample of filaments applying the quality con-
straints used for the high quality subsample, but allowing
filaments closer to a third node when, a) the node pair sepa-
ration is less than 10h−1Mpc, b) the minimum density along
the filament is greater than 10 times the mean density, c) the
sum of the virial radii of the nodes is > 2.5h−1Mpc, d) the
filaments are close to straight-line shapes. These modifica-
tions, in conjunction with the intrinsic properties of voronoi
tessellations for the node pair selection, ensures that it is
very unlikely that the short filaments in this new sample
are repeated segments of other detected filaments. The rea-
son behind this is that for larger node pair separations, there
will be larger distances from a node to node axis to a third
node. Otherwise the constrain of a common facet between
node pair voronoi cells would not be fulfilled. This test sub-
sample is shown as green long dashed line in Figure 11; as
can be noticed the relation of filament connections as a func-
tion of mass becomes stronger.

4.2 Application to observational data

The density and gap parameters can also be used in fila-
ments detected using galaxy positions. However, it would
become more difficult to measure a filament thickness since
there seldom is dynamical information to calculate binding
energy conditions. The possibility in these cases is to select

Figure 11. Number of filament connections per node as func-
tion of node mass. Different line types correspond to sam-
ples selected in this paper (identified in the figure key); the
barred histogram corresponds to the sample of filaments in
Colberg, Krughoff & Connolly (2005). The hatched area shows
the range of masses containing only 10 node pairs in our numerical
simulation.

filament members assuming that galaxies are bound to the
filament and to require orbit times lower than tF . As can be
seen in Figure 7, using a fixed orbit time allows to recover a
distribution of r0 (see Section 3.3 for the definitions of r0, r1,
r2 and r3) which, although slightly narrower, peaks at the
same radius as when using the full energy calculation. Also,
the recovery of the filament mass is only mildly affected by
the use of r0 or r1 to select filament members.

Figure 12 shows the relation between r0 and r1. As can
be seen, there is a linear relation between these quantities
for r1 < median(r0). Filaments in the high quality subsam-
ple show a very similar median r0 and a slightly lower me-
dian r1 than the full sample, an effect that probably arises
from the fact that filaments in the high quality subsample
are shorter than in the full sample (see Fig. 7). In the case
of the observational data with no dynamical information,
the method would only provide measurements of r2 which,
when comparing the vertical long dashed and dotted lines
in both panels, can be seen to provide a good approxima-
tion to r0. As the relation between r0 and r1 is reliable for
thin filaments, r2 < 1.2Mpc/h, thick filaments will proba-
bly suffer from an under-estimation of their real thickness,
particularly if their quality is low. Regarding r3 (horizontal
dotted lines), it can be seen that their median values are
very similar to that of r1, indicating that if one can esti-
mate the collapse time of bound objects to the filament, the
membership obtained using this estimated time provides a
good membership criterion.
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Figure 12. r0 vs. r1 for the full sample of filaments (left panel) and for the high quality subsample (right). The vertical and horizontal
dotted lines show the median values of r0 and r1 (respectively), which are quantities obtained using the full binding energy calculation.
The dashed lines show the median values of r2 and r3 (vertical and horizontal lines, respectively), which are the equivalent to r0 and r1

for the case with no dynamical information (and therefore no energy calculation).

5 CONCLUSIONS

We presented an automated method to detect filaments
in cosmological simulations and observational data, using
haloes above a fixed mass as tracers of filament nodes. As
filaments cannot be treated as virialised structures as in the
case of haloes, and as they are characterised by a wide range
of lengths, it is a difficult task to identify them automati-
cally. As a result these have been mostly identified by eye.
In this work we detect filaments using an automated algo-
rithm that provides two filament quality parameters, i) a
minimum skeleton characteristic density, and ii) a gap pa-
rameter given by the maximum distance between consecu-
tive skeleton neighbours divided by the average consecutive
skeleton neighbour distance in individual filaments. A small
gap parameter and a high density parameter, ensure the best
quality for a filament. The latter condition is equivalent to
request a high density contrast.

In our method we define the width of filaments using
the median radius (r1) that contains the haloes gravitation-
ally bound to the filament in the plane perpendicular to the
filament skeleton, and that are characterised by orbit or col-
lapse times below an upper threshold. An application of the
method to observational data can be done since the radius
r1 shows a good correlation with r0 and r2, obtained as-
suming that all the galaxies are bound to the filament and
computing their orbit times based only on their positions
and masses; the members are then selected requiring orbit
times below a fixed time tF . The relation between r1 and
r2 is one-to-one for thin filaments below r0 ≈ 1.2Mpc/h;
in thicker filaments r2 tends to slightly under-estimate the
actual width of a filament.

We have presented several filament properties which can
be studied in observational catalogues such as the SDSS. In
particular, a subsample comprising the 33% highest quality

filaments in our numerical simulations shows very similar
properties to filaments detected by eye in numerical simula-
tions by Colberg, Krughoff & Connolly (2005),

• Filament lengths are mostly concentrated below
50h−1Mpc, but can extend to up to 150h−1Mpc

• Shorter filaments are characterised by more straight-
line geometries than longer filaments. Filaments with node
separations below 30h−1Mpc are 13% longer than the dis-
tance between their nodes; this increases to 40% for larger
node separations.

• The distribution of filament widths is relatively narrow
and shows a clear peak at d = 3h−1Mpc. There are indica-
tions of an increase in the filament thickness as the filament
length increases.

• Nodes are connected on average to 2 filaments, this
number increases slightly with the node mass, reaching ≈ 3
filaments per node for masses close to 1015M⊙

• In the infall region around nodes the average central
skeleton density can be as high as a hundred times the mean
density; at larger distances the density drops to a few times
the mean density, and maintains a roughly constant value
along 20 − 80% of the filament length.

• There is a strong relation between length, quality, and
straightness in the filament shape, where shorter filaments
have better quality and are closer to straight-line geometries.

The filament properties we have studied in this work are
focused on the general characteristics of filaments. There
remain many specific properties of filaments and of their
galaxy populations which can be related to several recent
results such as (i) the halo clustering dependence on the halo
mass and on its formation time (Gao, Springel & White
2005), (ii) the correlations between halo concentration and
spin with the local environment (Avila-Reese et al. 2005),
(iii) the fact that galaxy spins are strongly aligned along
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filaments (Pimbblet 2005), (iv) the results using semi-
analytic models obtained by González & Padilla (2009)
which show several variations of galaxy properties with
the local and large scale environment, as well as (v) other
results showing that galaxy formation should be strongly
dependent on large scale environment starting from their
early stages of development, due for example to the de-
layed reionisation of filaments with respect to clusters as
shown by hydro-simulations of the intracluster medium
(Finlator et al. 2009). A first step will be to compare ob-
servational galaxy properties in filaments, in particular their
colours, star-formation rates and luminosities with results
from semi-analytic models, to characterise some of the pre-
viously mentioned environment effects.

Several studies of galaxy properties in clusters and voids
have opened the possibility to expect important variations
in the properties of haloes or galaxies while embedded in
filament-like environments, since the populations of galaxies
and haloes are very different in voids and clusters. By con-
verging to a standard filament classification and detection
method, the study of galaxy properties and halo assembly
in filaments can be carried out with great detail to help
understand the reasons behind these important population
changes.
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